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Sumary

During the oourse of this contfact an extensive series of prograas

have been prepared for an IBM 7070 data processing machine., Thie
set of programs includes calculations of the following type.

1. Lens read in '

2. ‘Third and fifth order oalculation

'3, Automatic correction of third and fifth order caloulations

L. Skew ray tracing modes

S. Radial energy distribution

6. Frequency response

7. Library routine
The ORDEALS Optics Programs

A set of programs have been prepared to ocarry out many of the
requirements for automatic lens design on an IBM 7070. Thio set of
programs is called ORDEALS.

| The ORDE’AL3 programs are described in the following writeups which
have been prepared for general circulation. These notes were prepared
for a Rochester Summer School where the programs were desoribed and
demonstrated., The programs written up ares

1., QOptics Programs for the IBM 7070 Computer

" This writeup is available in 1imited supply. It is also being
constantly improved and added to, (Included with this report as Appendix A)
II. A general Linearization Method for Automatic Lens Correction.

This paper has not yet been presented for publication because all -
the latest features in this program have not been checked out. (Included

with this report as Appendix B)



III. Introduction to the Geometric Optical Frequency Response

This report describes the theory jJustifying the use of Geometriocal
frequency response. (Included with this report as Appendix C)

Future Work

This ORDEAL program is now being put into subroutines in Fortran
language suitable for a 7090. The new program will use automatic
correction based on ray deviations rather than using aberration theory.
By tracing 13 rays, it 1s possible to eraluate the optical system up
to the 7th order. After experience with this method has been evaluated
the decision will be made as to whether to add the thiré and fifth order
aberration theory. The latest method will optimize using geometrical
ray aberration, At a much later stage it will become necessary to in-
corporate wave front aberration correction.

Publications

During this period we have published the following paper in the
Journal of the Optical Society.

Creative Thinking and Computing Machines in Optical Design. Robert E.
Hopkins and Gordon Spencer. J. Opt. Soc. Am. Vol. 52, No. 2, 172-176,
Pebruary 1962, This paper is included in this report.

The ORDEALS program writeup and tape units have been made available
to three optical companies,

1, Texas Instruments
2. F. M. A.
3. Pacific Optical Company



The lbl']md.n'g oompanies have used the program at Rochester.
| 1. Paoific Optical Oo.
, ; 2, Bausch and Lombt
3. Tropel Inc.
| L. Bastman Kodak
'5. Itek Corporation

Persornel

This contract has supported the graduate work of 09rdon Spencer.
He is now writing a PhD thesis on this problem of automatic correction.

The contract has also par;.ially supported Mathew Rimmer. Mr. Rimmer
is now oompleting a Masters thesis on Fifth Order Aberration Theory.

Mrs. Alice Sinclair has been used to write programs, Her main
comtribution has been in preparing a Library routine. This feature allows
us to store for ready access all optical design solutioms, |
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INTRODUCTION s
‘f The Ordeals Programs.
1) There are three segaants of programs. ‘
| N Basic Features of Call and Data w.
1) First word alphabetio.
2) Type of floating point system.
c. MAKE UP OF THE LINS DEOK.
1) LEMM,
2) Comment cards.
3) Index seleotion card.
L) Curvature, thiciness and index cards for every surface
including the object and image.
5) The paraxial ray data.
6) Call cards for other programs, -
D. INPUTs CALL AND DATA CARDS,

1) LENIN.

2) Comment cards.

3) Index selection card.

k) Ourvature cards.
Types of curvature cards.
Previous curvature pick up.
Oonic seotions.
Aspheric surfaces,



%) Tickmess oards.
Types of thickness cards.
Clear aperture solve.
Object distance.
é) n\‘u.ot refraction cards.
a) Befrecting surface.
b) Reflecting surface.
7) Parexial Ray Data.
8) romp.
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d) HOLDT cards.
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b) Mll Field Trace.
¢) Individual Ray Trece.
1) Transfer card INDTR
2) Practional object height
J) Intrence pupil coordinates



B.
O
g.
R.
I.

12) Clsar Apertures.
s) Automatic assigment.
b) Clear aperture cards.
¢) OUTCA. Outside clear aperture.
d) INCA. Inside clear asperture,
1)) Spet diagrem, 8AM
a) Wave length weight.
b) FPractional object height.
c) Foous shift,
d) Spot list.
1l) Radial Mergy Distribution.
Center displacement.
15) Frequency Response.
16) Lens Read Out.
OUTPUT.

SAMPLE INPUT AND OUTPUT.

Altering Fixed Constants.

Operation of the Machine.
Oeneral Comments.

1 SPRYTE
2 Automatic correction.
3 The problem of sssigning weights.
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Appendix A

OPTICS PROGRAMS FOR THE I.B.M. 7070 OOMPUTER
May 10, 1962.

A set of design and evaluation programs called Ordeals have Son
written for the I.B.M. 7070 machine. The following write-up is a brief
desoription of the program input and output features. The program is
being constantly worked on, so this deacription is subject to alteratfons.
There has been no attempt in this write-up to provide a complete desoription
of the program, but it is available in autocoder language.

There are 238 pages of program. So far there are 75 pages of flow
charts.

The Ordeals programs are written for an I.B.M. 7070 machine which
contains the following basic units.

1) Three, channel one, tape units
2) Three, channel two, tape units
3) A card reader unit

L) A card punch unit

S) A 1401 printer unit

6) A 10K storage 7070.

The programs available are:

1) Automatic first, third and fifth order aberrations plus
seventh order spherical aberration,

2) A ray trace program,

3) Spot diagram, radial energy distribution and pseudo

goometrical frequency response.

N



The program can accomnodate centered rotationally symmetrical surfaces

of the form
2 - cs? o (0)8h + (£)s8 ¢ ()88 ¢ (m)s10, (1)
1+ V1 - (xe1)c2s2

vhere S = | x2+¢ Y2,

Decentering and tilt plus non-rotationally symmetrical surfaces are

being added to the program. A write-up of Spryte (Special Purpose RAY TRACE) is
included in Appendix #1.

The 7070 Ordeals program has been planned and written by Mr. Mathew
Rimmer and Mr, William Hennessy. Mr. Rimmer wrote the aberration analysis,
and Mr. Hennessy planned and wrote most of the other features in the program.
Mr. Gordon Spencer has worked out the details of most of the computation
techniques, and formulated the automatic correction method used. (See
Appendix 2,) Dr. Robert Hopkins has mostly contributed by insisting that
the program be easy to use and require a minimum of input data.

A, The Ordeals Programs.

All of the 7070 Ordeals programs are located on tape 10. The major
programs are called into core storage for execution with call cards. The
call cards are simply cards with the name of the program punched on them.
There are three segments of programs. One set, called the I segment, remains
in core storage once it has been called in. The programs in segments one
and two have to share space in core storage. If one calls programs from
segment two, the programs from segment one which are in core are wiped out.

The programs with their call names and segments are listed below:

Segment I,
LENIN Lens read in.
LEO Lens punch out.

LOAD load constants.




Segment 1.

AXPAN Axial fan.

PUFIR Pull field trace.

INDVR Individual ray.

S Spot diagranm.

SIrr Focus shift,

RED Radial energy distributiom.
Segment 2.

FORD Fifth order

CORD Fifth order correct,

AUTO Automatic correction.
Segment 1 contains programs used in connection with ray tracing. Seg-
ment 2 contains programs comnected to aberration calculation and correctiom.

Sugnent I oontains programs common to ray tracing and aberration analysis.

3. BASIC FEATURES OF CALL AND DATA CARDS.

Input cards are always punched with alphabetic information in the first
field., Either alphabetic or numeric information may be punched in the five
remaining fields, Fields are separated on the card by one or more blank
columns., The first field may be punched anywhere on the card, but usually
it is started in the first column. A field may contain a maximum of ten
alphabetic characters or twenty numeric characters.

In most cases, numerical information is punched in floating point form,
with the sign first, the exponent next and the number last. PFor example:

$11000000 represents the number + 1.0 and
- 491000000 represents the number - 0.0l.



k=

The floating point exponent refers to 50 as a base, and exponents may go
from 99 to 01, It is not necessary to punch the insignificant seros in a
number; hence the number -0,00400000 could be punched -4BL, and the above
numbers as 511 and -L91.

If all the paramsters on a card are sero, the alphabetic field is the
only one vhich must be punched, If the first parameter is sero, but the
second is not, then it is necessary to punch a single sero in order to keep
the proper order of the words. For example, an aspheric constants card may
have four fields plus the alphabetic field. If the first, second and fourth
constants are zero and the third constant is ~0.000026, it may be punched
as follows:

ASPH 0 0 -L626.

C. MAKE UP OF THE LENS DECK.
Since there are several options available for setting up a lens deck,
a general outline is presented hers.

1. LENIN. This call card calls the lens read-in program, reads
the lens data and executes a paraxial trace.

2. Comment cards; Cards may be inserted to identify lens,
give date, etc.

3. Index selection card: This card defines the wave lengths
to be used in the third and fifth order sberration compu-
tations. Five wave lengths are specified: mid-wave length,
two for primary color aberrations and two for secondary
color aberrations.

L. FMrst curvature cards defines the curvature of the object
surface.

i
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Appendix A

5.

6.

7.

9.
10.

D.

Details
1.

2.

-5-

First thickness cards defines the axial separation between
the object surface aml the first surface of the lens system.
Index of Refraction cards This card defines five indices
of refraction (usually, A, C, d, F, g) for the medium follow-
ing the surface. Any five wave lengths may be used, but
they are always referred to as A, C, D, F and G (in that
order) in the program.

Ourvature, thickness and index cards for the remaining
surfaces. Thickness and index cards refer to the space
following the surface.

A final curvature card for the final image surface.

The paraxial ray data card,

Call and data cards for other programs.

INPUT DATA

of Input and Call Cards.
LENINt This is a call card for the lens read-in program.
LENIN may be punched in any position in the card. All the
letters must be together, however, with no spaces between
thenm,
Comment cards: Following the LENIN card, one may add as
many comment cards as desired. A comment card must start
with an asterisk in word field one. Comments in numeric or
alphabetic form may be punched according to the following
rules;

a. Words should not exceed ten digits.

b. Do not extend comments beyond column 59,

M
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¢. There must be a space between the asterisk and the
first character.
A card with an asterisk may be used as a spacing card.
Examples ?ho comnents, "John Smith, Telescope Objective,
December 8, 1962", oould be punched in the following four
oardss
L
# JOHN SMITH. TELESCOPE OBJECTIVE
# DEC 8 1962
*

Index of Refraction selection cards

Field one is punched with the alpha word NRSEL. Field two speci-
fies the wave lengths used in the calculations, the first letter
designating the major color. This wave length will be used for
the paraxial trace, third and fifth order aberrations. The next
two letters refer to the primary chromatic aberrations; the last
two letters refer to the secondary chromatic aberrations. Any
permutation of ACDFG with repetitions, making a total of five
letters, is permitted. Note that "FC" and "FD" will give chromatic
aberrations with the usudl sign eonventions, while "GP* and *DP*
will give aberrations :wkth rreversed signs.

Example: To do third order and fifth order calculations in D
light, primary color between F and C and secondary color between
F and D, punch the NRSEL card as follows:

NRSEL DPFCFD
Curvature Cards;

There are the following types of curvature cards which may be

' E
e m—
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Appendix A

used in the program:

Card Type Cods for Field 1
a) Regular curvature cv
b) Regular curvature, stop surface ovs
¢) Regular curvature, image surface (146
d) Angle solve on the axial ray UA
e) Angle solve on the chief ray 1[4}
£) Radius of curvature RD
g) Previous curvature pick up PC
h) Previous surface pick up Ps
i) Previous radius pick up PR

The S may be added to the code for any curvature card in order
to make the surface the stop surface. For example, PCS, UAS are
allowed codes for curvature cards. An I may be added to any curva-
ture code in order to make the surface the image surface, e.g., PCIl.

The first curvature card in a lens system is always the object
curvature card. Usually it has a curvature of szero, so it is
punched CV. The zero is not needed.

Previous curvature pick up: Often it is necessary or desirable

to make a curvature identical with, or have a constant difference
from, a previous curvature. This is done with the code PC. In
field two the surface number of the surface to be picked up is
inserted in fixed point. The curvature may be picked up with a
reverse in sign by punching a minus sign in front of the surface
number. A constant difference (¥ C) may be added (or subtracted)
to the picked up curvature by inserting a floating point number

in field three. The conic constant K will always be picked up, and
its sign will not be changed.



Example: Suppose that we want the 15th surface to pick up the

curvature on the 10th surface with a reverse in sign and a curvature

difference of -0.0l. Punch the 15th curvature card as follows:
PC -10 -L91.
If the code PR is used, it picks up the previous radius and
it adds a AR.
If the code is PS, it picks up all the sui-face constants of
the previous surface, including the constant K (see Equation 1),
and the aspheric constants if there are any.

Conic sections: Any floating point numbers inserted in the third

word field of a CV card are interpreted as the conic section
constant K. The following table relates the conic section K to

the various types of conic sections available:

Type of Conic Section Constant K
Paraboloid K = 2
Hyperboloid K £ -1
Ellipsoid revolved about the major axis -1<k<0
Ellipsoid revolved about the minor axis K>O0

The conic section K = -E° where E is the eccentricity.
Example: A paraboloid could be described as CV -L91 -511.

Aspheric Surfaces: General aspheric surfaces of the type given in

equation 1 may be inserted at any time by adding a card directly

after a ourvature card, with ASPH in field one. Fields two, three,

four and five are reserved for the coefficients e, £, g and h,

(See equation 1.)

Y
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Example: An aspherio surface with deformation from a paraboloid
would then have two cards as follows:
CV -491 -511
ASPH 0 0 -4626 -US2l
5. ‘Thiockness cards:

There are several types of thickness cards, as indicated in
the following table:

Card Type Code for Field 1
a) Regular thickness ™
b) YA solve. The computer computes the YA

required thickness to make the y of
the axial ray on the next surface
have the prescribed YA.

¢) YC is the same for the chief ray. b (o

d) Previous thiciness pick up. This Pr
is exactly analogous to the previous
curvature code,

e) Clear aperture solve. CA

Clear aperture solve: This feature provides for appropriate axial

separations between surfaces, There are two types of adjacent
surfaces. They are called closed if they edge contact when brought
together, If they contact at the center, they are called open.

If the code CA is used on the 3 surface, the program checks to

see vhat the (j +1) surface is. Next it checks to see whether
the material between the two surfaces is glass or air. Finally

it oomputes the thickness betwsen the 3 and the ( J + 1) surfaces
acoording to the following schedule:
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Oondition Alr Qlass
)( Open Ty = a ET- b CA.

a nominally is 0,01 b nominally is 0.2
™H = zJ -IJ +1*°
¢ nominally is 0.1

() Olosed 'mJ - z‘1 -23 1

In no case is the glass thickness made less than 0.2 CA. The second
field of the CA card contains the numerical value of the radius of
the clear aperture required.
For example: A clear aperture radius of 1.2 would be punched:
CA 5112,
The sags ZJ and z‘1 + ] AT computed with the following approxi-

mate formulas
2 = 082 (1 :n?f_z_(x+1))/(2-c2s2 (K+1) .

One should remember that the edge thicknesses (c) of the lenses
are detemined by the fixed constant O.1l. This constant may be
altered at any time, as well as the constants a and b, by inserting
10AD cards after the FORD card. See the section (0) on altering
program constants,

Object Distance: In this program all object distances TH, are
considered to be finite. To make an infinite object distance,

one merely needs to use a large number for TH,. For example, it

is convenient to use a floating point number such as 601, or 60F,
where F is the focal length of the system. This is useful because
then the object height ¥, has the same value as the image height,
vith merely a change of the exponent. For example, suppose , lens
has a focal length of 2" and it is to cover a half image field of
6". Then if TH, is made 602, T, 1s 596. There is one danger with

promnd pme—d  peomd pesmef pumni e peenf pand P
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6.

this if the first surface is plano or slightly concave towards the
object. Then i, vhich is equal to yc ¢+ n_y may become so small
that, when it is raised to the 7th power, as is done in caloulating
the 7th order spherical aberration, it may underflow. If this
happens, one may reduce TH,.

Index of Refraction Cards:

a) Refracting surface: Punch INDEX in word field one and five
floating point indices in word fields two, three, four, five and
six,
The five indices are referred to by the alphabetic letters
A, Cy D, F and G. One may insert any indices desired, but they
must be referred to with these letters.
Cautionl!:
1) Punch an index other than zero for all five fields even
though they may not be used.
2) The index card is a potential source of grave danger.
A mispunched number here can mean a false index of
refraction and go unnoticed until the final design is

made up. Be sure and check these indicesl It is advis-

able to compute V numbers directly from the numbers on
the card. It is also advisable to make up a set of
prepunched cards of the commonly-used glasses.

b) Reflecting surfaces: .If a surface is to be reflecting, simply

_punch REFL in word field one in place of INDEX. No other numbers

are needed. The program automatically inserts negative index
valuss for all the following surfaces until another REFL card is
encountered. During this right-to~left travel, one must insert '



1.

8.

9.
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thicknessesz with negative values. This is one place where the
negative previous thiciness is useful.
Paraxial Ray Data Card:

A oard with PXRAY in field one is used to provide the speci-

fication of the axial and the chief ray.

The items entered in fields two, three and four ares

'io - the height of the object at the object surface. It
ia usually chosen to be equal to the maximum value
to be used by the lens.

- the height of the axial ray at the first surface of
the ayate.m. It is usually chosen to be the maximum
height acceptable by the lens for axial rays,

il - the height of the chief ray on the first surface.

If a surface in the system is labelled as the stop surface,

it is not necessary to insert a value of 'il. The program will
assume a value of il and then trace the chief ray through to the

stop surface. If the ¥ is not zero on the stop surface, the progranm
automatically changes il to make it zero. If no surface is labelled
stop surface and 171 is left zero, then the first surface becomes

the atop surface.

FORD:

FORD is a call card which calls in the aberration correcting
program and initiates the computation. Upon completion, the program
automatioally transfers to CORD,
00RD: -

This program initiates the automatic correcting part of the
program. The first thing it does is ask to read VARY carda, and
finally CORR, ADD, HOLD AND HOLDT cards. These cards may be explained

frmmy ey g e
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as follows: -
&) VARY cards.

VARY cards are punched with VARY in field one, a fixed point
surface number in field two, the curvature, conic constant k,
aspheric constants - or thicimess to be varied in field three, and
a fixed point weight in field four. The weights vary from sero
to nine.

Example: To vary the curvature on the 6th surface with a weight
of two, punch a card as follows:

VARY 6 CV 2
It is possible to vary CV, CC*, TH, AD, AE, AF, AG, RD. If a VARY
CV oard is used, the curvature on the surface will be varied with-
out regard to the curvature code used. For example, if the surface
has a UA code and a VARY CV card is used, the UA will be varied.
b) CORR ocards.

These cards specify the items for correction. OORR is punched
in field one. Field two is the aberration to be corrected. Field
three is the target value for the correction. The items whioch may
be corrected are listed in part f of this section.

Examples If one wishes to correct the spherical aberration 8A5
to sero, the card can be punched
OORR SAS
o) ADD cards.
. If a OORR card is changed to an ADD, then the aberration
signified in word field two is added to the previous OORR caxd.
Never punch target values or weights on an ADD card.

# 0C is the code for the conic sesction constant K.



Example: One may correct SA3 4 SAS + SA7 to sero by inserting
the following three cards:
CORR SA3
ADD SAS
ADD SA7
One could correct a system to an over-all length of 10.0 by
inserting the following set of cards.
CORR TH 1 521
ADD TH 2
ADD TH 3
etc. to
ADD ™ K-1
d) HOLDT card. !

If the CORR is replaced by HOLDT in word field one, the
program tries to minimize the difference between the target value
and present value. Field two contains the aberration, field
three the target value apd field four a fixed point weight which
varies from zero to nine.

Examples If one wants to minimize the difference between SA3 #
8AS ¢ SA7 and sero with a weight of 2, ons can punch the following
three cards:

HOLDT SA3 0 2

ADD  8A5

ADD  SA7
The nowr cards are used for aberrations which may not lend them-
selves for complete correction to a target value. One also may

use HOLDT cards to correct aberrations after all the variables
are used up. One may insert more HOLDT cards than variables.

g |
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e) HOLD cards.

If HOLDT is replaced by HOLD in field one, it indicates that
the present value of the aberration should become the target valwe,
Othervise the card is exactly the same as the HOLDT oard,
£) The following 1tems may be corrected vith OORR, HOLDT, AID
or HOLD cards:

FOOAL  The focal length of the system,
TACH Primary axial color.

T Primary lateral color.

TACH2 Secondary axial oolor,

TCH2 Secondary lateral color.

SA3 - Third order spherical aberration, *
8AS Fifth order spherical aberration.

SA7 Seventh order spherical aberration.

OOMA3 Third order tangential coma.

COMAS Fifth order linear coma.

LCOMA Seventh order cubic coma.

TA33 Third order tangential astigmatic blur.
TASS Fifth order tangential astigmatic blur.
DIST3 Third order distortion. AY,

DISTS Fifth order distortion. AYj

T0BSA Tangential oblique spherical aberration.
SOBSA Sagittal oblique spherical aberration.

PT23 Third order Petsval blur,
PT2S Fifth order Pets blur,
SA33 Third order Sagittal astigmatic blur.

8AS5 Fifth order Sagittal astigmatic blur.
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If only third order aberrations are asked for, the program does
not compute all the fifth order aberrations during the amtomatio

oorrecting phase.
g€) It is possible to correct some items on individual surfaces.

In this case, the OORR, HOLD, ADD, or HOLDT are punched as followes

Field 1. CORR, ADD, HOLD or HOLDT.
Field 2. CODE OF SURFACE ITEM.
Field 3, Surface number,

Meld L. Target value,

The codes for the individual surface items ares

PI Angle of incidence of axial ray.
L PIC Angle of incidence of chief ray.

) ) Angle u of axial ray.

PUC Angle U of chief ray.

‘TH Thickness.

CORD will transfer to read in correction data. After CORD, one
should have VARY, CORR, ADD, HOLD, or HOLDT cards. These cards are
followed by an AUTO card described in the next section. FORD auto-

matically transfers to OORD upon completion of the fifth order progrem.

Thus it is not necessary to follow a FORD card with a CORD card, If
FORD 1s followed by a call card for another program instead of a VARY,
CORR, ADD, HOLDT or HOLD, ﬂ;u nevw progranm is called and oontrol is
transferred to it. CORD may be used to correct a lens in steps. For
example, after FORD one might insert VARY cards, and CORR cards to
oorrect axial and lateral color and Petsval. These must be followed
by an AUTO card. Then a CORD card will permit reading in monochro-

matic correction data ‘and an AUTO card, which will begin correction
from the already color-corrected system.
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10, AUTO calls in the sutomatic correction program and transfers to
initiate the sutomatic correction procedure. It must be wsed to
initiate this featurs.

The automatio correction method is briefly the followings

The o, ¢t table will systematically be varied one parameter
at a time. Depending on what the designer asks the machine to
oorrect, it will compute third and fifth order aberrations. With
this routine it is possible to compute finite difference retios,

After all the required difference ratios are cemputed, they
are loaded into the equation solving routine.

The equation solving routine seeks to minimise a funotion

# 3G -4

mbjoct to the simultaneous solution of the set of equations,

b l= 1’ 2,.0..1‘
i1t

In matrix notation this leads to the solution of the following
set of N + L equations with N ¢ L unknowns:

ATAx +BT\ = A4,
Bx +0\A=¢€
with

A 5(:., ------ N B= LYRRL Y
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These equations are used in the design program to solve the sets
of non-linear equations encountered in lens design by assuming
linearity over a small region.

The elements of the x matrix become py - 5Py The difference
ratioa are evaluated at Py Py is the value of p 3 at a prediocted
solution.

The elements of the d matrix become di’ a set of distances
from target values for the set of functions to be minimiszed..

The elements of the e matrix become e; which are the distances
from target values for the functions to be corrected exactly.

The A matrix is a set of Lagrange multipliers.

This method is the general form for McCarthy's, Rosen's and
Wynne's method,

A more detalled analysis of this procedure is described by
Gordon Spencer in a paper presented to the Optical Society of
America and included in Appendix 2.

Ray Trace Modes.

There are four modes of ray tracing available. The first
three modes are called with the cards AXFAN, FUFTR, INDVR. The
fourth mode is SAM, a ray tracing for spot diagrams. This will
be described in Section 13. The first two call in programs which
use the paraxial ray data and automatically trace through a group
of rays. The last card calls for data specifying individual ray
data. A description of these modes is as follows:

a) Axial Fan: This mode of trace is called by a card with
the first field punched AXFAN. Immediately following this card,

one must have a card punched with RADAT in field one and the wave
length code for up to three wave lengths in field two.
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Example: To trace axial fans in D 1ight and C light, use the
following two oards:
AXFAN
RADAT DC
To do more than three wave lengthe, extra AXFAN and RADAT ocards
are needed.
The progran traces three rays in the first wave length from
the axial objeot point (Y, = 0) at the following values of X on
the entrance pupil (Y,, = 0).

Ray 2 Xen ® 0:75 Yen
Ray 3 Xen * 10 Yon

It then repeats the trace for the other wave lengths on the RADAT
ocard,
b) Mull Fleld Trace: This mode of ray trace is called with a card

punched with FUFTR in field one. It is immediately followed with
& RADAT card. This RADAT card is the same as the one used after
AXFAN, but there are extra fields. In field three, a fixed point
number specifies the number of off-axis image pointa. The fixed
point number in field four specifies the number of meridional
rays to be traced on each side of the chief ray.

Example: The following two cards are a common sxample of the
FUFTR:

RADAT DFC 2 3



These cards call the following sequence of ray tracings

Rays 1-3
" L6
" 6-9
Ray 10
" pu l
"2
Rays 13-18
" 19-21
" 22-2l
" 25-30
" 31-33

An axdal fan in D light

An axial fan in F light

An axial fan in C light

A chief ray in D light from an object
point at 2/3 ¥,.

A chief ray in F light from an object
point at 2/3 ¥,.

A chief ray in C light from an object
point at 2/3 ¥,.

Rays from an object at 2/3 ¥, but confined
to the meridional plane X = 0. The rays
are evenly spaced above and below the
chief ray. The two rays farthest from
the chief ray pass through the top and
bottom of the entrance pupil.

Three skew rays from the object at 2/3 ¥,
which pass through the entrance pupil with

Ien = 0. The rays are evenly spaced from

the center of the pupil to the edge.
Chief rays in D, F and C light from an
object point at ¥,.

Meridional rays like rays 13-18 from an
object point at ¥,.

Three skew rays like rays 19-21 from an
object point at ¥ .

1 .
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The type of rays traced in this mode are illustrated in Pig. 1.

H=067 —

™

w ]
L A 4 ..aa'
o 0,5  §

By punching PRINT in field five on RADAT card, one may obtain
full surface print. (For desoription, see Seotion BE.) With no
FRINT one obtains partial print.
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o) Individual Ray Trace: For individual ray trace, one must have
the following arrangement of cardss
1) The first card is a transfer card with INDTR punched in
field one.
2) Te next card must be a fractional height card. FOBJH
is inserted in field one; next the fractional object height
in floating point is placed in field two. The rest of the
card may be blank, in which case a minimum of printing will
be done (no print), and color D will be selected for the
chief ray. If a color other than D is desired (A C F Q)
one of these letters must be punched. If desired, PRINT
may be punched first and then the cblor.

If the card read at this time is not a FOBJH card, the
card will be ignored and reading will continue until a FOBJH
card is read, or a transfer card to the next routine.

3) The next card must be ENPCO, an entrance pupil coordinate
card. X on the entrance pupil is punched in field two and
Y on the entrance pupil is punched in field three. The rest
of this card may be blank or contain a color (A C D F G)

or the word PRINT or the word NOPRT. If the card is blank,
printing and color will be controlled by the FOBJH card, or
if that was blank, no print and D will be used. The print
and color codes are originally set to no and D respectively.
These codes can be changed on either FOBJH or ENPCO cards
and remain changed until a new change is read in. The color
and print words can be entered in either order, or either
may be blank, i.e,, not put in at all.
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12,

Clear Apertures:

Provision is made in the program to stop rays which exceed
a certain clear aperture radius, This is done to cut down on the
amount of useless raytracing. The clear aperture radius may be
arrived at in three different ways.
a) Automatic Assignment: If the designer makes no attempt to

assign a clear aperture radius to a surface, the clear aperture
is sutomatically computed from paraxial ray data. The clear
aperture is computed from the following formlas
g old +15) + b+ o)

In the early stages of design, the clear apertures are assigned
in this manner.
b) By inserting a CA card in place of a T card.
c) By inserting an OUTCA card, OUTCA cards are inserted just
before the thickness cards. To provide for an outside clear
aperture of 1.2, the card would be punched OUTCA 5112.

An OUTCA card should not be used on a surface with CA.
The OUTCA card is used when the designer wishes to alter the
clear apertures assigned automatically. There are cases where
the paraxial ray data used in the automatic method is not accurate
enough and rays are needlessly blocked. One example of this is
the use of a field flattener. The formula assigns a value close
to CA = ¥ because y is very small, If there is any positive
distortion, all the actual rays may exceed this value of y. For
this case it is advisable to insert an OUTCA card on the field
flatiener surfaces in order to overrule the automatic assignment
of CA. OUTCA cards are used extensively in the later atages of
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a design when the energy distribution is computed.
d) The program also provides for a card called INCA. This card
blocks out all rays closer to the optical axis than a specified
inside olear aperture radius. If a surface has both an OUTCA -
and INCA, they are inserted on two cards immediately preceding
the thiclme‘u card. Their order does not matter.

The INCA card does not block out chief rays, since these
rays are used as references.
Spot Diagrams:

SAM is the call card for the spot diagram program,
a) SAM should be followed immediately by a card with WAVEW in
field one. The fields two to six in this card are reserved for
fixed point weights for the five wave lengths on the index of
refraction cards. The weights are used to specify the number
of rays to be traced. The weight times ten is the number of rays
traced., For example: a WAVEW card punched 1 0 3 0O 1 would
trace 10 rays in A light, 30 rays in D light and 10 rays in G
light. The spot diagram contains coordinates for all the wave
lengths.
b) Immediately following WAVEW is a card with FOBJH in field one.
Field two is reserved for the floating point fractional object
height. This card, therefore, indicates the object height for
the spot diagram. It is necessary to insert a FOBJH card for
each objeot height,
o) If a focus shift is needed, a card with SHIFT is inserted after
the FOBJH card. The second field on the SHIFT card should oontain
the focus shift as a floating point number.
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15,

d) The spot diagram coordinates may be listed by inserting a
oard with SPLIT in field one. All the preceding spot diagrams
will then be listed.

The spot diagram program contains a subroutine that uses
the paraxial ray data and the clear apertures of the lenses and
computes the shape and area of the vignetted aperture on the
entrance pupil. The rays that are traced for each color are
evenly. distributed over this area.

Radial Energy Distribution:

A call card labelled RED calls in the program to compute
the radial or encircled energy distribution for all the preceding
fractional object heights. This program computes the per cent
radial energy distribution at five per cent intervals. The circles
are all assumed to be centered around the chief ray in the major
color as specified on the NRSEL card. It is possible to shift the
center of the circles by inserting a card with CD in field one,
followed by the floating point displacement in fields two and three
for X and Y center displacement respectively. CD stands for center
displacement. One may insert as many center displacement cards
as needed.

FREQUENCY RESPONSE

This program computes a geometrical frequency response from
energy distribution data. The formula used is
T AE J, (wr)

Emax
wiere E is the difference between two successive values of the

T (w) =

energy, E. r = (R)(RSC), where R is the arithmetic mean of the

two E values, and RSC = (sec O)i, where O is the obliquity angle,
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W = 217N where N is the number of spatial cycles per unit length.
R and N must be such that wr is dimensionless. Division by K.,
normalizes the response function.

There are two entries to the program:

1) FREgr.

This call card will initialize computation of energy
distributions for each spot diagram computed thus far on
the present lens which will appear in the output.

a) The obliquity factor and up to twenty values of N

are read in as follows:

RSC +511
FRQ +511
FRQ +512
FRQ 513
RQ 531
END

b) The output is two columns, one showing the frequency,
and the other the response at that frequency.
2) FREQC.

This card calls for energy distribution data to be
read from up to twenty cards with the code DIST in field
one, the energy in field two and the radius in field three:

DIST  L95 L85
DIST 501 189

DIST s1 kg2
1))

' ] i ]
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The program then transfers to read in the obliquity

factor and the frequericiea , &8 in 1A,

16. Lens Read Outs
A call card marked LEO is used to provide an updated lens

deck, It may be inserted any place in a deck, provided it doemn't
separate a call card and its required data ocards,

E. OUTPUT.

The output format for the 7070 programs are shown on pages 29-30,
The first column is the line list number. The second column of three
numbers indicates the type of printing. The 500 line is the input data
obtained from the PXRAY card and the object distance TH,.

The lines 501 to 506 are the lines printed for each surface in the
lens. The second column, which is a series of Ol values, is the surface
number. In this example only the first surface is shown. The aberra-

tions shown are the surface contributions.

The lines 507 to 510 are the total third and fifth order aberrations
for the system.

The 1line 511 shows the printing during each change cycle. Vo 18

the initial value of a parameter. V, is the new value, Vi ~ V, is the
change in the parameter,
The lines 200 to 253 are the lines indicating the printing in ray

tracing. The last digit in the number indicates the wave length,

according to the following rule:
A =

© = O o
n ]
wm &~ w N
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Line 223 shows the full print on individual surfaces.
The first line of printing after RED has the 150 printing ocode.
The line of printing is shown on page 30. The items printed in
this line are:
1. The area of the vignetted aperture.
2. R, is the radius of the aperture limiting the upper
rays, as projected on the entrance pupil plane.
3. G, is the center of this aperture as located in the
entrance pupil.
L. Ry is the radius of the aperture limiting the lower
rays, as projected on the entrance pupil plane.
5. ©Cy is the center of the lower aperture as located in
the entrance pupil.
6. Ry, is the radius of the entrance pupil.
Following this 150 line, the per cent energy table is printed.
Above the table four numbers are printed, and labelled. They ares
l. FOBJH fractional object height.
2. Focus shift,
3. CDy center displacement in x direction.
b CDy center displacement in y direction.
The per cent energy table is made up of two columns, the per cent emergy
and the corresponding radius of spot.
Following the table, a single line of fixed point numbers gives

the number of rays traced in each color and the total number of rays.
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F. SAMPLE INPUT AND OUTPUT.

A sample Output from FORD is shown on pages 2 and 3 in Sample Design
number three. The program first prints out the input data from LENIN to
PXRAY,

On Page L the Input from FORD to the final CORR DIST3 is shown. The
remaining lines from OL2 to OSL show the changes made in the first iterltionl
and the total aberrations for the first iteration.

Page 15 shows the input cards AUTO, LEO and FUFTR. The remainder of
page 15, pages 16, 17 and 18 show the ray tracing. The last machine printed
line is the RADAT card for the ray tracing.

The makeup of the lens can always be checked by the input printing.

The cards are all in sequence in the deck even though they appear to be
spread apart in the printing.

The output for the energy distribution calculation is shown on pages
30 and 31 of the triplet example. The printing on this sheet is self-

explanatory.

a. ALTERING FIXED CONSTANTS IN THE PROGRAM.

There are several constants that the designer may want to alter in the
program. This may be done easily by introducing a card marked LOAD in field
one. Field two should contain a four digit location number. Field three
is reserved for the constant. The constant must be inserted with all ten
digits.

The LOAD cards may be inserted directly after a FORD card. For exsmple,

see Page 12 of Sample 3,
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The following constants are frequently changed:
Programmed
Use of Constant Location Value
1) Maximum allowable change in a variable. 7116 +5020000000
2) Maximum number of passes. 5758 +0000000006
3) Tolerance on aberrations. The tolerance is
a per cent of the target value plus a fixed
increment. The per cent value is in 9589 +5010000000
The fixed increment is in 9588 +);71.0000000
L) The constants a, b, ¢ used in clear aperture
solve a 4278 14910000000
b 4,280 5020000000
c 4279 5010000000

l.
2.
3.

- 5,

6.
7.
8.

9.

OPERATION OF THE MACHINE. CARD ORIENTATION.

Set reader switch (1,2) to A, B.
Set punch switch (1,2) to B, B.
Mount Ordeals Tape on 10.
Mount Scratch Tapes on 11, 20, 22.
(20, 22 necessary only for SAM and RED.)
Initialize for Tape 10.
Press Start. End of File on Reader, Start on Punch.
Punch in time clock.
Press computer reset and start on typewriter console.

If typewriter types out CDERR
1) Remove cards from stacker.

2) Remove from hopper.

3) Run out cards in machine.

L) Add to cards in hopper and rerun by hitting start on typewriter.

-

[ —
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10,

11.

12,
13.
k.
15.

1.

2.
3.

In case of overflow or uncorrectable card error:

Depress Computer Reset and Start. This then bypasses the lens
and goes on to the next lens, A comment RSTRT is printed out on
print-out page.

Upon completion of problem, the console typewriter prints out the
message.,

Print tape 11 off line,

Use PEST output program for 1401,
Put output tape on tape unit 2.
Console Switch A up, all others down.

Put 8% x 11 paper in 1401,

GENERAL COMMENTS.

The third and fifth order programs take approximately } second per
surface.

The ray trace tukes 0.1 seconds per surface.

It takes approximately 10 seconds to do the matrix algebra required
in a 4O x LO matrix.

The size of the matrix is equal to the sum of the number of VARY
cards plus the number of CORR cards.

The use of weights on the VARY cards is to change their relative
influence with respect to other variables. As one increases the
weight from O to 9 on a VARY card, it tends to decrease the change
in the variable. It has been found that for lenses with a focal
length around 10, it is not necessary to introduce weights (i.e.,
weights of zero) on the curvatures or thicknesses. In long focal
length lenses, it is usually advisable to put some weight on the

curvatures if it is desirable for them to influence the correction,
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10.
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Weights may also be assigned to the HOLDT cards. A large number for i
the weight places a heavy emphasis on the minimization feature. If

the weight is too large, it may make it impossible for the target

values to be reached. On the other hand, if the weights are not high

enough, the minimization may have '1little effect.

The problem of introducing weights is very difficult and our present

program uses two methods for doing this. We are not satisfied with

either method, so we are not including them in this write-up. Appendix

three contains a discussion of the weighting problem, and describes {
how it is now being }:ione.

It is advisable to limit the number of iterations to six. Usually (
something is amiss if this is not enough. In long systems it is good

econony to cut this to four. This gives the designer a chance to 1
see if everything appears satisfactory.

There is a mixed blessing written into the program. This is a maxi=-
mum allowed change in variables., If any change exceeds this value,
it is scaled to the maximum allowed change and all other changes are
scaled by the same amount. This feature prevents many blow ups when
solutions are far away from the target, but it also slows down the
iteration. The value we have inserted in the program works well for
lenses with a focal length around 10. It is much easier to insert
this constant in hindsite than it is in advance.

There is a limit on the number of surfaces which may be used, The

present limit is 30, including the object and image.



A ral Linearisation Method for Automatic Lens Correction

G. H. Spencer
Institute of Optics, Univorsity of Rochester, Rochester 20, New York

The use of programmed computing machinery for automatic lens
correction requires a definite prescription according to which a lens
system may be adjudged: (a) acceptable or not acceptable, or (b) improved
or not improved over a previous configuration. Judgments of the first
kind may be made on the basis of whether or not a given set of equations
are satisfied; judgments of the second kind, on the basis of whether or
not the value of a "merit function” has been reduced. A typical lens
design problem will involve both absolute requirements, to which & judgment
of the first kind is appropriate, and relative requirements calling for
8 Judgment of the second kind. This paper describes a linearization method
designed to accommodate requirements of both types. Several previously
desoribed linearisation procedures are shown to be included within the
Iramework of the present method.
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I. Introduotion

The development of high speed programmed computing machinery has,
during the past decade, prompted the investigation of various methods for
sutomating, or partially automating, the lens design process. The problem
is complicated, unfortunately, by the fact that the functions which measufe
system performance are non-linear in the system variables. One approach to
the problea is to approximate the non-linear functions by linear ones and
solve the nnou- problem. The iterative application of such a procedure can
be expected to converge, under certain conditions, to the solution of the.
non-linear problem. This approach is adopted in the present paper.

In the method to be described, Lagrange multipliers are introduced
as a means of achieving a sufficiently general framework to accommodate both
absolute and relative system requirements., Absolute requirements are taken
here to mean those requirements which must be met exactly in order that a
system be considered acceptable. Relative requirements are those which may
be lumped together, with various weighting factors, into a single "merit
funotion® whose value is to be minimised. Experience indicates that it is
desirable, if not necessary, to allow requirements of both types to be imposed
in the ocourse of designing a lens system.

It should be mentioned that the use of Lagrange multipliers is not
new to automatic lens design. Poderl, and Meiron and Lobenstein? have described
modified steepest descent methods in which Lagrange multipliers are used to
determine a direction of change for the system variables such that certain
properties of the system remain unchanged while the value of a merit function
is reduced. Steepest desoent methods, however, possess serious deficiencies
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from a practical standpoint, the chief among these being extremely slow con-
vergence. There is some evidence to indicate that linearisation procedures,

vhen they converge, are likely to converge much faster than descent mathoda.3 X

II. Statement o_f the Problem

One is given an optical system of J variables, Py (3 = 1,0005d)e
These variables may be surface curvatures, axial separations of surfaces,
refractive indices, or aspheric deformation coefficients. In terms of these
variables, a mmber of functions, f, (p,,...,p;)> My be defined which serve
to measure various characteristics of the system, both with regard to its
physical structure and its performance. The design problem is that of finding
a simultaneous solution, or something approaching a simultaneous solution, of
the set of equations

£,(Pyseeespy) = 8y (k = 1,..0,K), (1)
vwhere the s, are constants representing the desired values of the fk'

Aside from such basic system properties as focal length, magnifi-
cation, back focus, and total length, the choices which exist for the functions,
£y, are rmgbh numerous. Among them one finds monochromatic and chromatioc
aberration coefficients, simple ray deviations referred to either the chief
ray or Gaussian image points, mean spot diagram radii, weighted moments of
spot diagram distributions, mean square wavefront deformations, and energy
distribution and frequency response characteristics. Recent attempts to evolve
single "figures of merit" for images of extended objects have produced such
quantities as the relative structural content, fidelity defect, and correlation
qualii'.y5 o No attempt will be made here to assess the relative merits of these
various choices. It should be pointed out, however, that considerations of

physical significance (i.e., whether or not a meaningful indication is given
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of the way in whioch a given objootl'. field will be imaged) must be supplemented
by oonsiderations of oomputntioml efficiency and linearity.

Now, frequently & simultaneous solution will not exist for the
entire set of equations. If K)J, for example, the existence of & simultanecus
solution is extremely nnl:utoly.' In such ocases, the minimisation of

K

P -2 w0, @

k=l
vhere the W, are weight faotors, may be an acceptable alternative to an exact
solution, If a simultaneous solution does in fact exist, it will correspond
to the sbsolute mintmm,dP= 0.

In general, there will be certain of the funotioms, ‘fk

it 1is essential than an exact solution be obtained, while for the remaining

, for which

functions the minimisation of éwﬂl suffice. One thus divides the fk into
two groups,

‘l(pl"°.’pJ) (n - 1,000,“)

hn(Pln"an) : (n= 19"‘:“(‘”:

M
é -Z "Inz(gll - .m)z (3)
me)l

subjeot to the linlnéuous solution of the set of N equations,
hn(plgoco,pJ) - tn (n = 1,...N (J)’ (h)
vhere the t, are the required values of the funotions, By

and seeks to minimise
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'I11. Linearisation of the Problem

As previously indicated, the functions,.g, and h;, are generally
non-linear. However, in the neighborhood of a given point, (p),eee,py)s they -
may be represented by the constant plus first order texms of their Teylor
expansions about that point. To this approximation, then,

g, " &, * Jﬁ_l (awapj)(pj-pi) (s)
and
J
e my o D Om/3rey - By, ()

vhere the derivatives are evaluated at the point (pi,...,p&).

For notational convenience, the following definitions are now mades
®n - B = 9y
tn =~ hy = ey
Py - p:', "9 (1)
@enps" g
Ehng, 3 by
Using the linear approximations (5) and (6) for g, and h,, Eqs. (3)

and (L) beooms, in terms of the definitions (7),
M

@ » g '.2 ;l a494 = Gy ‘ (3a)

J
2. tngdy " n (n = 1,...N{J). (La)
8
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IV. The Method of Lagrange Multipliers

The problem of finding an extremm of a function subject to auxiliary
constraints can be most profitably attacked by the method of Lagrange multi-
pliers®. Although in the present context its application will be restricted
to the minimisation of a quadratic function subject to linear constraints, the
method is quite generally applicable.

Let the equations of constraint for a system of J variables be
represented by

Un(Qyseeesq;) = oy (n = 1,...,8J), (8)
where the e, are oonstants. Ordinarily such a set of equations will not

possess a unique solution. Rather, there will be a continuum of points

satisfying the equations., If (ql,... ,qJ) is one such solution, then
(qp ¢ dq),e.+»q; + dqg) 15 also a solution provided the differentials,

(dql.... ,qu) , satisfy the relations

J
& = Z (Q%Q;J)dqj -0 (n = 1,...,8dd).  (9)
=1

It is required that a solution point be chosen at which a given
funotion, é(ql”" ,qJ ), remains stationary with respect to differential

variations oconsistent with Eqs. (9). At such a point, then,
ad - Jf_‘é(aﬁ/amj)dqJ - 0, (20)

vhere the differentials satisfy Eqs. (9).

At this juncture, the artifice of Lagrange multipliers may be intro-
duced. If Eqs. (9) are satisfied by a set of differentials (which was the
ocondition under whioch the extremum of@ was defined above), then
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N o4
ﬁ)}ldun . Z ZA n(a u,/9a,)dq, = 0 (1)

nsl n=l j=1

is also satisfied by that set of differentials, where thoxn are arbitrary
multipliers, Thus Eq. (10) will be unchanged by addition of the sum,

Z:k%-

Performing this addition, Eq. (10) becomes

aP- fEBQ ay) + nz':i),,«? W) q,)]dq, =0, (12)

J=1
Now Bq. (12) will be satisfied if

(aé/aqk) * EN:iAn(a%,eqk) =0 (k= 1,0e0,J)e (Q3)
n-

BEgs. (8) and (13) together form a set of N ¢ J equations in the
Ne+J ummoum,)n and q 5? and are potentially solvable for these unknowns,

The resultant set of values, q 42 will then satisfy the extremum condition,
Bq. (10), in pddition to satisfying the equations of constraint.

v. mnoation gg _’d_x_e Present Problem

The present problem requires the minimisation of the functi’on,§ R
given by Eq. (3a) subject to the constraints represented by Eqs. (La). Thus

we set

un(qlm-,qJ) - bndqj. (1)
. =1

from which
@ u/Sq) = by ' (15)

'
JE————

s
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Also, from Eq. (3a),

mel

M J
©980, - 2[§ it - B w.] (16)

" Eqs. (13) thus become

M J :
21 %vuzuw% *Z hnx'Q Z wlad,  (kel.,d),  Qn
=] =

nel

vhere »2 has been replaced byDn.

Eqs. (17) and (La) form a set of N ¢ J linear equationg which may
be solved by standard technisuew for the N ¢ J unknowns, q -n:bn

Before proceeding further, it should be verified that the extremum
of P guaranteed by the solution of Eqs. (17) and (La) 1s actually a minimum.
12 Pis expanded in a Taylor series about the extremm paint, the first order
terms vanish by virtue of Eq. (10). Thus in the neighborhood of the extremum,

is given by the second order terms of the Taylor seriess

Q R %1 =] @*F31,34)8080, (18)
\hm§. denotes the extremum value. It is assumed that the variations,
4 q, and f g, are consistent with Eqs. (La).

From Kq. (16),

M
3 ) qdaqk) - & "-"mk‘ud’ (19)

so that Eq. (18) becomes

- - Z’. - s n SwictnjA 9y B0 = 2 Z'mmqu' (20)

J*1 k=1 m=l J=1



Thus,

é" ?.z o, (a)

wiich shows that<P, 1s a xinimm,

If the equality in M. (21) holds for any allowed variations, then &P
hl&idtoboo-igdoﬁmtomdthonmnhmtnniquolyddimd? Z!’.nt.h:la
cﬁo, M. (17) and (La) do not possess a unique solution. The ambiguity in the
solution may be removed, however, by adding to the smm

J 2
S = ?:1“393’ , (22)

mmcamwtfmtors. In addition to removing the ambiguity in the
solution, the inclusion of the sum, S, affords a measure of control over the
influence of the different variables on the solution. A large value for the
weight fector oy, for example, might be expected to yield a relatively small

solution value, Qo

nsuwumn«amé, Eqs. (17) must be modified by adding
the tem

t Osﬂk) - c:qk. (23)
Egs. (1'() are thus replaced by

M J 2 N _D M 2
2 Z{v- Syl * °k?‘l OZ LI 74 -Zu. aydy, (k= 1,000,0). (24)
Ll '

n=l n~l

VI. Matrix Form of the Solution

The wiw of Eqs. (2l) and (La) may be greatly facilitated by

recasting the equations in matrix form. The necessary matrices are the following:
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the following:

(25)

- - TE LM Sr T CUTRL B o s

(26)

(27)

(28)

(29)

(30)



10,

’ (31)

‘__.::...._'_.P

%

2.} oo
J

The matrix A and column matrix d will always appear multiplied by
the matrix of weight factors W. For convenience these products are defined
to be

M=WA (33)

£ = Wd, (3k)
Also, in order to conserve space, a matrix G and a column matrix g are.defined

by
a=Mueo (35)

g = M, (36)
vhere the supersoript, t, denotes the transpose.
With these definitions, Eqs. (24) and (La) become, respectively,
g+ 8- ¢ (1)

h LA I (38)
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While the solution of Eqs. (37) and (38) may be obtained through the
inversion of a single matrix having dimensions (NxJ)x(NxJ), it is perhaps better
for reasons of computational acocuracy to arrive at the lolﬁtion by inverting
two emaller matrices. From Eq. (37),
q =0 -'Btg-

(39)
Substituting this result in Iq. (38) and solving for'Dt
- E"}(B07g - o), (L0)
vhere
| E = Bo-lat. (1)

(hco-D has been determined, it may be supstituted in Eq. (39) to determine é.
The matrices, G and E, which required inversion have dimensions JxJ and NxN,
respectively. Boﬂn of these matrices are symmetric and hence require fewer
operations for their inversion than do arbitrary matrices.

Since the solution of Eqs. (37) and (38) is based on the linear
spproximations expressed by Eqs. (5) and (6), it will not in general satisfy
Eqs. (L) and yield a true minimum oté. However, if a solution does in fact
exist for Eqs. (L), then Eqs. (37) and (38) may be applied iteratively to arrive
at the required solution.

It is important that the changes in the variables produced at a given
iteration be kept within reasonable limits so that the linear approximations
retain some degree of validity. Otherwise, a system configuration may be
generated which is so far removed from the final solution that the chance of
convergence is reduced to the vanishing point. If the e, have been reduced
to sero, the weight factors, Cy, may be used to limit the changes produced at

& given iteration. If the e are not all zero, however, it is impossible to
confine the changes in all of the variables within arbitrary limits by use of

S—
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i

the weights, °.1' In such cases one may take

Py =P} ¢ kay (3 = 1,00050), - (L2)

ﬁmkhduimda.nllmm@vﬂmtommwdfhopdmm |
specified limits,

VII. Choice g Weight Factors
The weight factors, w, and c'J, play an important role in determining |
both the nature of the solution obtained and the speed with which the method ]

converges to the solution. It has already been indicated that the factors c¢ 3

control the effectiveness of the different variables. As a factor ¢, is made t

larger, the corresponding variable, q, is forced toward a smaller solution

value. This control should be of particular value in preventing variables from

straying far beyond physically realizable limits. The factors W, determine

the emphasis placed upon the corresponding terms of é. A large value for a

particular factor, w, will lead to a solution for which the k-th term of § is

likely to be reduced to a greater extent than if a lesser value of W, were

used. The overall balance between the values of the factors W, and the factors

gj.detem.nos vhether the mijor emphasis is placed on the minimization of the

quadratic approximation to§ or on keeping the changes in the system variables

relatively smmall from iteration to iteration. ’ l
Even when all the weight factors are equal, however, thers may be an

~ artificial weighting which arises from the fact that both variables and per-

formance functions may be a variety of types having widely differing ranges.

“10 4n the value of a high order aspheric defor-

For example, a variation of 10
mation coefficient might produce changes in a set of performance functions of
the same order of magnitude as those produced by a variation of 10 in the .valus

of a lens element thickmess. Thus, with equal weights, o4» for these two



Appendix B 13.

variables, a solution would be obtained in which virtually all of the Mworic®
wes done by the aspheric cosfficient, Similarly, if one term of Phad a larger
valus and larger derivatives than any of the other terms, the greatest emphasis
would be p].u.«d on the reduction of that temm.

! It is of primary importance that the effects of artificial weighting
of the variables be counteracted. Because of the large differences among the
variables vhich may be encountered in practice, it is possible for certain
variables to be rendered almost totally ineffective by artificial weighting.
If significant changes in these variables are necessary to the final solutiom,
the method may fall to oo'nvergo or, at best, will converge slowly. |

A possible way in which to cmtqwt the artificial weighting of
the variables is to require that

@ %/3q,) - (3 “¥194,°), (13)
vhere
M
Y -2 (- w? 2, - )% (L)
ms n=1
This yields
2 o2, N
- b . (LS)
° ‘L;‘:llm %-1 nJ

In order to retain the ability to control the weighting of variables, 032 nay
be replaced by

M N
02 =57 S 4y *S b ) (46)

m=1 n=1

Equal values for the new weight factors, © 4 will have the effect of making
all of the variables about equally effective.

P



k.

A numerical problem remains in that the elements of the matrices A

and B may exhibit an extremely wide range of values so that round-off errors

become troublesome. This problem may be alleviated by transforming to a new

set of variables defined by
9y Xy

vhere

Z‘M 2 N 2 1/2
o(d ,m-lﬂnd * %bnj )

Eqs. (37) and (38) then become

Uﬁoﬁtg-g
and

BQq « o,
where

T ekt o T
and

B - ofL,

The matricese{~> and T are the diagonal matricess

o -1 -
O X -1
and
312 o
Ta .
O 52

(L7)

(L8)

(L9)
(s0)
(51)

(52)

(53)

(5k)

Tened

.d H

R, Foomond ;.-"

¥
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It is evident from the above that the effeot of artificial weighting
of the variables disappears with proper scaling of the variables.

VI;[I. Particular Cases 9_!_ Interest

Several previously described methods of automatic lens correction
appear within the framework of the present formulation. It should be instruo-
tive, therefore, to review them.

The Method of Least Squares used by Rosen and Eldert? , and by Hoirone,
deals with the minimization oféin the absence of constraints. -Thus B, C, and
¢ beoome mull matrices and Eq. (39) reduces to

q = a~1g = (MtM)-lMbe, (55)
This method has been used with some success to reduce the magnitude
of spot diagram ray deviations and to minimize third order aberratioms. It is
necessary that the number of variables be less than or equal to the number of
terns of . Otherwise the solution will be indeterminate. In some cases
excessively large values of the q J' may be produced. The changes applied to
the variables must then be limited in the manner indicated by Eq. (L2).

Feder’ has pointed out that while the method may converge relatively
quickly to the vicinity of a minimum, the accuracy of the method in that
vicinity may be so impaired by nonlinearity as to prevent further development.

Hopkins and McCarthyl0s 1l have described a procedures designed to
Yield expliocit values for a set of system functions when the number of available
variables exceeds or equals the number of functions. (In their application,
the system functions were the third order monochromatic and first order chromatic
aberrations.) The procedure follows from the present formulation by eliminating

émd setting c‘1 = 1 for all j. Thus A and d become null matrices, G becomes
the identity matrix, and Eq. (4O) reduces to



16,
'£> =gl = -(BBY) 1, (s6)
Eq. (39) then yields
q= -Btz)- BY(BBY)-1e. (57)

This method has been used for severg.l years at the Institute of Optics
and has proved to be a powerful aid in practical deaignlz. * The condition that
the sum of the squares of th'e ay be minimized tends to confine successive changes
in the system configuration within reasonable limits when the elements o{ e are
not excessively large nor the elements of B'vexcessively small. In cases for
which large changes have been generated, recourse to the limiting procedure
represented by Eq. (L42) has usually proved successful in preventing the process
from diverging.

' " Recently, Wynnem’ ! has described a method of "Successive Linear
Approximation at Maaclmum Steps", which is an extension of the Method of Least
Squares, Here one includes the sum S but sets all of the weight factors, °;j ’
equal. Thus

C = cI, : (58)
vhere I is the identity matrix. Eq. (39) then becomes
q = (MM « c1)-lutr, (59)

This method provides control over the magnitude of .the q 5 at each
iteration through the choice of a value for c. As c is increased, the magnitude
of q (considered as a J dimensional vector) is decreased and the direction of
q is shifted toward the direction of the negative gradient of éat the point
q~ 0, i.e.,, toward the direction of maximum decrease in é. The ability to
restrict the g 5 to a region of approximate validity of Eqs. (6), coupled with
the removal of any indeterminacy in the solution, assures convergence. It is
necessary to choose ¢ carefully if the full potential of the method is to be.

,__,;~-.t‘.;\_,;.__..q;....;:__di-—nc-dtu'-f-ﬁlﬂ—ih—lc—iuj_i
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realised, however., Too large a valus will overly restrict the changes in the
variables so that the speed of convergence will be mmeounr.l}y reduced, Too
mmall & value may result in less than optimm convergenoe because of non-linearity.

IX. Conclusions
It is not antioipated that the method described here will be a panacea
for all problems of lens design. It is expected, however, that the method will
provide the lens designer with a particularly flexible means of exploiting the
advantage of high speed automatic calculation offered by modern computing machinery.
The power of the method will depend largely on the skill which the designer dis-

plays in controlling its use.
The choice of system evaluation functions should depend not only on

tiu pu'uoulu- requirements of a given design problem but also on the stage of
development of the design. At the outset it may be most expedient to work with
simple evaluation functions, e.g., the third and fifth order aberrations, leaving
the use of more definitive but computationally more complex evaluaition functions
to a later stage. If reasonable valuss cannot be obtained for the simple functions
it vill be necessary to make a major alteration in the system, either by adding
- aspherics or additional elements, or by selecting an entirely different initial
configuration. In such circumstances the additional time required to ocompute
values for more elaborate functions from the outset would be wasted.

It has been mentioned that the choice of weight factors for the terms
of§ determines the nature of the solution obtained. As a design progresses,
the judgment of the designer in modifying the weight factors, so that emphasis
is shifted from one characteristic of the system performance to smother, will
be influntial in determining the quality of the final design.
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Appendix C
INTRODUCTION TO THE QEOMETRIC OPTICAL FREQUENCY RESPONSE

Trgnsition from the Wave Optical to the Geometric Optical Response
The wave optical intensity response is given by
:t,(lx'.ﬂ,) -xt % % A (X,0) A" (X- RNy, Y- MRM,) dXd¥, ()
vhere i
< d(x.Y
ALY = A, e % $0x,Y) (2)
and
9 O 2
X - S S Iax,y)| axar. (3)

A\ represents the wavelength of light in the image space; R, the radius of
the Gaussian reference sphere; (Ny, Ny), the spatial frequency components;
(X,Y), the coordinates of a general point on the reference sphere, referred
to coordinate axes in the exit pupil plane.

A(X,Y) is called the complex aperture transmission funotion, or
simply the aperture function. It specifies the amplitude and phase variation,
over the reference sphere, of the light originating at a monochromatic object
source point. |A(X,Y)| 1s usually assumed to have a constant value of unity
within the physical limits defined by the exit pupil and sero value outside
these linits. (This assumption is, of course, invalid for systems having
apodising spertures.)

@ (X,Y) is called the wave aberration. It is defined with respect
to a oonstant phase wavefront in the neighborhood of thq exit pupil. To be
definite, we may take the wavefront which passes through the origin, (o,0),

-1-



2=

at the exit pupil, @(X,Y) is the distance from a point on the wavefront to
the point (X,Y) on the.reference sphere, measured along the normal to the
wavefront (i.e., along the ray which intersects the reference sphere at (x,Y)).
Our purpose in this section is to deduce the form of the response
funotion in the short wavelength limit, \ —»0. This is the geometrio optical
spproximation.
For convenience, we first write

| 4

ACK,Y) A%(X- MRy, Y- ARN,) = re' (1)
vhere, from (2),

re  |AGD| | AX-ARiy, T-ARK) [ . (s)
and

2

y- 3 [ $(X,Y) - $(x-AR0, !-»\ml,)] . (6)

We ‘see immediately that
2
Unr= [Axy| (1)

Ao
80 our attention is directed to the function ¥ .

The most obvious method of attack is to expand V¥ as a power series
in )\ about A = o, To do this we consider é(«,e ) vhere

o = X- MRN
¢ = I- xmy} (8)

The Taylor expansion of § in the variable )\ 1is

oe -~ )"‘¢
- 3 (3=
$= = (3 y2o (®)
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Now 3/3) wmay be thought of as an operator which is applied m times in
the nth term of the series, We know that

Y IR T R ERY X
‘;T‘T-?»‘”igx

= -R(N,}% +N,§s%\ ,

so that the operator V¥/)) is

Yy = ~R(MKHN V)

(10)
Hence we may write the series (9) as
b B A NN AN M) B
M3
m BTy <AR(N AT Ly MDY S (i, Y+ e ) 60
' X Ax Y VY it (11)

In the preceding equation, we have made use of the fact that (« '@ ) = (X,Y)
vhen )\ * o g0 that

M &(“,Q\) - Q § (%) - NS0T
- Ao L3 2-‘@):()(‘“ VX

VD - 3;<~,Q5> Y1)
.W"' ))‘Q ;e (d'p: Qx‘Y) 3NY

vhere F(d,e) 1s any function of = and ¢ .



Substituting (11) in (6):
w—l ~
S X )
v = zer(N“‘% *"')S"Y) - uﬂz‘l por] R (N“(X*N,, /v,)p . (12)

Thus, I ¥ = n'R(N,‘% +N.)‘—?—\) .

Ao (13)
It is assumed that none of the derivatives become infinits. There are
unusual cases in which this assumption is violated (e.g., when a wave normal
is tangent to the reference sphere), but the result (13) remains generally
valid.

We are now able to uﬁto the geometric optical response using
the results (13) md (7)s

glm Wi wrma (3% 43

o
. LX)
TN N = T M) = K § ¢ dxdy , (1b)

3 Ao

-

’ o {15 (X,Y) within pupil area
I we take , A(%,Y) , 0: &x:r outside pupil mnl

then the normalising factor, K, is simply the area, a, of the pupil, and
the infinite limits in (1L) may be replaced by the limits defined by the

X & N ‘i
7 i) = < S TR )

ot r'r'ol

(15)
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Representation in Terms of Image Plane Ray Coordinates

Our purpose in this section is to relate the wave aberration, ¢ s
to the image plane coordinates of the rays associated with the given wave-
front. The result will be used in Eq. (15) to obtain an expression for
the geometric optical response which 'dependa only upon the image plane ray
coordinates. The advantage of this representation comes from the fact that
it is an easier task to calculate accurate ray coordinates than to caloulate
wave aberrations.

Fig. 1 shows the exit pupil plane, (X,Y), the Géuasim reference
sphere, S, the given wavefront, W, and the image plane, (xk’!k)' The Gsussian
reference sphere is assumed to pass through the origin at the exit pupil
and to have its center of curvature at the Gaussian image point, ('X'R,Yk),

in the image plane. The image plane is assumed to be separated from the
exit pupil by a distance D.
Now the distance from a point (X,Y,Z) on the wavefront to the

Oaussian image point is

- 2 2 2
R! = [(x- X)) + (Y- Yk) + (2- D) ] %. (16)
If we define A to be the distance from the point (X,Y,Z) on the wavefront
to the reference sphere, measured along the normal to the referencé sphere,

we may write

R' =R+ A (7)

wvhere R is the radius of the reference sphere and is given by
Re [£2e82e0 ] H (16)

RA ¢+ A2 ax’ e o 22"2(ﬁk * !Yk + 2D). (19)



WAVEFRONT, W

FIGURE 1I.

WAVEFRONT ASSOCIATED WITH POINT OBJECT,AS IT
MIGHT APPEAR AT THE EXIT PUPIL.
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Now typically,

& .5 |
| 10 7, (20)

80 t0 & very good approximation we may drop the A2 term in (19). The

result may be taken as the equation of the wavefront and it will be oon-
venient to write it in the fom

F(X,Y,2) = XX, ¢ YT, + 2D- % (X2 + Y2 + 22) ¢+ RA = 0, (21)

Letting (xk,rk) represent the image plane coordinates of a ray
from (X,Y,Z) on the wavefront, the symmetric equations for the ray are

I X | Y- X . D-z

F F (22)
H $Y 3% -
BEvaluating the derivatives, we find

X,-X Y -X
k - X -1 (23)

'ik-xon-}%( Yk-rnﬂ;.%

(A 1s a funotion of X and Y only; once it is given, the Z coordinate on

the wavefront is determined 'by (21)). From (23) we immediately obtl:l.n the

relations
< [3
§% = XX - "3;1

To a good approximation we may replace A by fi, the wave aberration
introduced in section I. The order of magnitude relation assoociated with



T
this approximation is
[a - g|~ A2 (25)
Thus
§X R %}g
. (26)
iy ¥ n-g-g

These relations may be substituted in (15) to obtain the

roqn{ro'd expression.for the response:

Ty (Noky) = & % g cl,“(u“rx" A dxdy

exit fur‘-l

(27)

One of the most direct ways of evaluating the above integral
is to sum up spot diagram data. One traces a large number of rays through
the optical system, arranging them such that they are uniformly distributed
over the entrance pupil (and hence nearly uniformly distributed over the
exit pupil), The response integral (27) is then replaced by the swmation

formula

T,
2 cos 21rfN,,( S-X,,\J-* Ny(’yk\’- ]

b & s 2N X N (T,
(28)

vhere the subscript 3 identifies the yth ray, and T represents the total

number of rays.

——

—
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111, Averaged Circular Response

Suppose we are concerned with imaging a sinusoidal target having
spatial frequency, N, oriented at an angle @ with respect to the X axis in
the object plane (see Fig. 2). The spatial frequency oomponents then are

Ny = N sind
Ny = N cose

. | (29)
If we transform the ray deviations (§x., dy,) to polar fomm,

§X, = J0x ton0, ' | (30)
:Y“ b :(g l'lw.K )

we may write (27) as follows:

- o' ariN :(.(I;ﬂ.u.’.“'fgo..u'w.“\
Ely S % ‘ oY
exit pupil
: - -
- C'S Scmu‘(“ (or80) dXdY (31)
exit pupil

The average of (31) over all target orientations, @, constitutes
a useful criterion of system performance. We shall denote this average
by F(N) and call it the averaged circular response. Using (31),

wr a .
Fon = @y’ ( T\ (h,0) o = (?.'ra).'g gg NI iy

° Cl.cf'«ril
- ar . .
ST ‘S% S STINRRY sy
o qul'l o
L2 3
hd ,‘h S\ \ cos (2N S sny) JV dXdY . | (32)

Ty rﬂro | ©



“9e
Y/ 3
L Y ™~ ' I
Now = g.'c s(xsmy)JdY = J, (x ()

where J,(x) 1s the sero order Bessel function. Our response is thus

Fouy- &' % % :r.(ter(.:) dxdy

(3L)
exit pupil _
If spot diagram data is available, we may use the sumation
formala r
N & L T, [arN (8o ].
Fe T 42*" ! (35)

vhers T is the number of rays and (§ h‘)J is the distance from the Gaussian

image point to the point of intersection of the jth ray with the image plane,

It is common practice to present spot diagram data in the form
of radial energy distribution curves. If we were to center a sufficiently
small circular sperture at the Gaussian image point, a certain number of
rays would fall outside and be blocked. If the radius of the aperturs were
allowed to increass, we would find more and more rays passing through until
- eventuslly all ot the rays were admitted. The radial energy distribution
curve is a plot of the fraction of the total number of rays passing through
such an aperture as a function of the sperturs radius. Each ray represents
the light mor‘y’ passing through an elemental area of the aperture so that
a fraction of the total number of rays may be interpreted as a fraotion of
the total light energy passing through the optical system.
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From a radial energy distribution curve we may select a set of
points such as the following:

E.IQ’ 0

‘o‘?'.".': ) (‘(‘Jl
| |

| [

| |
E.= ‘:‘1:: N (r(u);

EM‘ ‘I) Q-(.\M

-_—_—-—

vhere m; is the number of rays passing through an aperture of radius
(Tey) { oentered at the Gaussian image point, and T is the total mumber
of rays in the spot diagram., The points are chosen such that M‘.">M‘.
(see Pig. 3).

If the points are not too widely separated, we may say to a fair
epproximation that the spot diagram consists of

m, Tay points having radius (-‘{L)'

= " " " " (‘( n) ot ("b\‘

t
]

|
| (:(“)i *(r‘n"‘.’
Py Y] " L S

Eea), + (Ttnde




FIGURE 2 | ~{

SINUSOIDAL TARGET IN THE OBJECT PLANE. -
FREQUENCY COMPONENTS : Ny= N sin 8, Ny=N cos 6 -[
K

RELATIVE . 1
ENERGY !

LAY :
' i
€, ~ |
|

!' ’ i
Ae, ‘

!| - : j
¥ : : M’P“ &

(8a), (B (2r), (e, .......... (%), *

FIGURE 3 -[

TYPICAL RADIAL ENERGY DISTRIBUTION CURVE SHOWING VALUES {

USED FOR APPROXIMATE AVERAGED CIRCULAR RESPONSE CALCULATIONS. -
i
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™us, (35) may be written
M c—
Fona =S o~ T [arN e, ],

el (36)
where |
AM; = M," - M (37)
and
T (:(k)z + (seh‘{-l
“(u\; * Y . (38)
Noting that

A-;:; ‘Ez‘E-

4wy (39)
we rewrite (36):

Fow = S AE, T, [arn(Te, ] (40)

A%

vhere

AE; =F;‘E;_‘ "(hl)

The formula (LO) requires much less computing time than does (35). Typically,
a value of 20 for M is sufficient to give acceptable accuracy for design
work,

IV, Series Expansion of the Averaged Circular Response -~

Moments of the Spot Diagram Distribution

A typical term of the series (35) may be expanded to yleld

$ e LN 1T

Wlarw(ien; 1= 2 hr

(k2)



Thus
T Y LN (i ]‘“ ”
S =Y [wN ) W
Forw LTS ALY L W (W3)

r;'l mug (‘“‘) mio b}
R Nt )
K, - ‘1—){ (hk)
(m!) 1
= LS (e 1
(Je ). A
A = F % (%J (15) )

The o\, may be recognised as the even moments of the radial spot
diagrem distribution. Recent applications of sutomatic computing techniques [
to the deésign of optical systems have been based on oy, as a measure of
system performance. We see that “1 determines the response in the low {
frequency region, and that minimization of 1 for a given image will maxi- }
mise the low frequency response. This gain, howsver, may be at the sacrifioe
of good high frequency response. The following example illustrates this {
point, )
Suppose we have an image characterised by the equation {
Few = e = ourg’ (1) |
vhere ( is the radial exit pupil coordinate:

¢-(+1d) t, (L7)
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The first temm of (L6) represents defect of foous, while the le§§lld tem
mnm‘l undsroorrected seventh order spherical aberration. We shall
take the coefficient, o, of the first term of (L6) as a variable which
allows us to alter the image distribution. Variation of ¢ corresponds to
& movement of the image plane along the Z axis.

Fig. (L) shows the response A*(N) for several valuss of ¢,

assuming an aperturs defined by

¢ €1 (L8)
The curve labelled A is obtained when c = o, The response is seen to drop
fqirly repidly in the low frequency region to a value of about 0.6 and then
to level out, extending well into the higher frequency region th
dropping below O.4. Fine detail in the object will thus be preserved in
the image, although at reduced contrast.

The ourve labelled B is obtained when ¢ = ,OL4. This is the value
of ¢ for vhich %1 is ninimum, The foa’ponu in the low frequency region
has bom‘oomidoubly improved. In the higher frequency region, however,
the response now drops quite rapidly to sero and becomes slightly negative,
Mutm "spurious resolution',

The curve labelled C corresponds to an intermediate image plane
position, ¢ . +022, The improvement over curve A extends well into the
mid frequenay region. Curve C is a decided improvement over curve B, the
slight reduction in low frequency response being more than compensated for
by the large elevation in the higher frequency response. (In special appli-
ocations, of oourse, curve B may be preferred for specific reasons determined

by the application.)
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Appendix C -1k-
O\iﬂocoomcpondltoﬂ\onin:muofﬂuanm

|
(Few); (19)

T
"t 2 | (Fe0) /%, ’

=1

whioch shows scme promise of being a more suitable "merit function® then
o  for gmeral purpose design.
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